Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

William T. A. Harrison

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(P-O) = 0.002 \text{ Å}$ Disorder in main residue R factor = 0.039 wR factor = 0.086 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Triethanolammonium dihydrogenphosphite

The title compound, $[HN(C_2H_4OH)_3](H_2PO_3)$ or C_6H_{16} - $NO_3^+ \cdot H_2PO_3^-$, is isostructural with its hydrogenselenite congener and contains a network of partially disordered triethanolammonium cations and dihydrogenphosphite anions [for the latter species: $d_{av}(P-O) = 1.514$ (2) Å and $\theta_{av}(O-P-O) = 111.9$ (2)°]. The $[H_2PO_3]^-$ units are linked into a polymeric chain by $P-O-H\cdots O-P$ hydrogen bonds along the polar [010] direction, with the chains crosslinked into (001) sheets by way of $O-H\cdots O$ bonds involving the organic species. Some $C-H\cdots O$ interactions may also be present $[d_{av}(H\cdots O) = 2.45 \text{ Å}, \theta_{av}(C-H\cdots O) = 158^\circ$ and $d_{av}(C\cdots O) = 3.364$ (4) Å]. The $[HN(C_2H_4OH)_3]^+$ cation contains a typical trifurcated intramolecular $N-H\cdots (O,O,O)$ hydrogen bond $[d_{av}(H\cdots O) = 2.31 \text{ Å}$ and $\theta_{av}(N-H\cdots O) = 112.7^\circ]$.

Comment

Triethanolammonium dihydrogenphosphite, $[HN(C_2H_4-OH)_3](H_2PO_3)$, (I), is isostructural with the recently reported triethanolammonium hydrogenselenite, $[HN(C_2H_4OH)_3]$ -(HSeO₃), which shows cytotoxic activity (Lukevics *et al.*, 2002).

The structure of (I) consists of triethanolammonium cations and dihydrogenphosphate anions (Fig. 1). The triethanolammonium cation is partially disordered over two positions [major component: atoms C1, C3, and C5 with an occupancy of 0.866 (5) and $d_{av}(N-C) = 1.503$ (4) Å; minor component: atoms C11, C13, and C15 with an occupancy of 0.134 (5) and $d_{av}(N-C) = 1.50 (2) \text{ Å}$]. Otherwise, it exhibits a typical (Yilmaz et al., 1996; Demir et al., 2003) tripodal conformation [for the major component; $d_{av}(C-C) = 1.474(4) \text{ Å}$ and $d_{av}(C-O) = 1.408 (4) \text{ Å}$, in which the ammonium H atom forms an intramolecular trifurcated hydrogen bond with the O atoms of the three ethanol groups $[d_{av}(H \cdots O) = 2.31 \text{ \AA} and$ $\theta_{av}(N-H\cdots O) = 112.7^{\circ}]$. The dihydrogenphosphite group shows its usual (Gordon & Harrison, 2003) pseudo-pyramidal geometry $[d_{av}(P-O) = 1.514(2) \text{ Å} \text{ and } \theta_{av}(O-P-O) =$ 111.9 (2)°], with the protonated P–O3 vertex showing its expected lengthening relative to the other two P–O bonds.

Received 28 July 2003 Accepted 31 July 2003 Online 8 August 2003

Figure 1

View of (I) (50% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius and H bonds are indicated by dashed lines. Only the major orientation of the organic molecule is shown; all C-H hydrogen atoms have been omitted for clarity.

Figure 2

Detail of a dihydrogenphosphite chain and the pendant organic species (major orientation only) in (I). Colour key: [H₂PO₃]⁻ pseudo-tetrahedra yellow, O atoms red, C atoms blue, N atoms purple, H atoms grey. The H...O portions of the N-H...O and O-H...O hydrogen bonds are highlighted in green and yellow, respectively. All C-H H atoms omitted for clarity.

The component species in (I) interact by means of an extensive network of O-H···O hydrogen bonds and C- $H \cdot \cdot \cdot O$ intermolecular contacts (Table 2). The $H_2PO_3^-$ units are linked into a polymeric chain by P-O-H···O-P hydrogen bonds in the polar [010] direction (Fig. 2). A similar dihydrogenphosphite chain was seen in $(CN_3H_6)(H_2PO_3)$ (Harrison, 2003). The organic species crosslink the chains in the **a** direction by way of $O_E - H \cdot \cdot \cdot O_P$ (E = ethanol and P = phosphite) hydrogen bonds, such that each cation makes two hydrogen bonds to one adjacent phosphite moiety (Fig. 1). This results in (001) slabs (Fig. 3). The possible $C-H \cdots O$ interactions $[d_{av}(H \cdots O) = 2.45 \text{ Å}, \theta_{av}(C - H \cdots O) = 158^{\circ} \text{ and}$ $d_{\rm av}({\rm C}\cdots{\rm O}) = 3.364$ (4) Å] were identified in a *PLATON*

Triethanolammonium dihydrogenphosphate, [HN(C₂H₄- OH_{3} (H₂PO₄) (Demir *et al.*, 2003) crystallizes in the same space group and has a rather similar structure to (I), in which chains of $[H_2PO_4]^-$ anions are crosslinked into sheets by the triethanolammonium cations. However, the $(H_2PO_4)^{-1}$ moieties in $[HN(C_2H_4OH)_3](H_2PO_4)$ are linked together by a distinctly different hydrogen-bonding motif involving alternating single and double $P-O-H \cdots O-P$ links.

Experimental

H₃PO₃ (0.81 g, 1 mmol) and triethanolamine (1.49 g, 1 mmol) were dissolved in 20 ml deionized water in a Petri dish, resulting in a clear solution. Rod-shaped crystals of (I) grew as the water evaporated over the course of a few days. These colourless transparent crystals were rinsed with acetone and dried in air.

Crystal data

 $\Delta \rho_{\rm min} = -0.24 \text{ e A}$ Absolute structure: Flack (1983), 1128 Friedel pairs Flack parameter = 0.11 (12)

Table 1

140 parameters

Selected geometric parameters (Å, °).

H-atom parameters constrained

P1-O1	1.4883 (19)	N1-C5	1.497 (4)
P1-O2	1.4901 (16)	N1-C1	1.503 (3)
P1-O3	1.563 (2)	N1-C3	1.509 (4)
01 - P1 - 02	117 83 (11)	$\Omega^2 = P1 = \Omega^3$	107 14 (11)
O1 - P1 - O3	110.75 (12)	02-11-05	107.14 (11)

Table 2					
Hydrogen-bonding	geometry	and	intermolecular	$C{-}H{\cdot}{\cdot}{\cdot}O$	contacts
(Å, °).					

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - H \cdots A$
O3−H2···O1 ⁱ	1.04	1.56	2.597 (3)	175
$N1-H3\cdots O6$	0.91	2.27	2.760 (3)	114
$N1-H3\cdots O4$	0.91	2.29	2.765 (3)	112
$N1 - H3 \cdot \cdot \cdot O5$	0.91	2.37	2.850 (3)	113
O4−H8···O2	0.92	1.76	2.672 (2)	176
O6−H18···O1	1.01	1.69	2.702 (3)	176
$O5-H13\cdots O2^{ii}$	1.06	1.68	2.731 (2)	175
$C1-H5\cdots O4^{iii}$	0.97	2.45	3.382 (4)	161
C3−H9···O5 ^{iv}	0.97	2.41	3.370 (4)	170
$C3-H10\cdots O3^{v}$	0.97	2.58	3.478 (4)	154
$C5-H14\cdots O6^{iv}$	0.97	2.36	3.227 (4)	148
Summature and an (i)) 1 (:::)		() 1

Symmetry codes: (i) $-x, \frac{1}{2} + y, -z$; (ii) 1 + x, y, z; (iii) $1 - x, y - \frac{1}{2}, 1 - z$ (v) 1 + x, y - 1, z.

The site occupancies of the two conformations (C1, C3, C5 and their attached H atoms/C11, C13, C15 and their attached H atoms) of the partially disordered organic species were constrained to sum to unity. The O-H and N-H H atoms were found in difference maps and were refined as riding atoms. The H atoms bonded to carbon and phosphorus were placed in calculated positions [d(C-H) = 0.97 Å and d(P-H) = 1.32 Å] and refined as riding. For all H atoms, the constraint $U_{iso}(H) = 1.2U_{eq}(parent atom)$ was applied.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97; molecular graphics: *ORTEP*3 (Farrugia, 1997) and *ATOMS* (Shape Software, 1999); software used to prepare material for publication: *SHELXL*97.

References

Bruker (1999). *SMART* (Version 5.624), *SAINT-Plus* (Version 6.02A) and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, o907o909.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Figure 3

[010] projection of (I), showing the (001) sheet-like arrangement of $[HN(C_2H_4OH)_3]^+$ (major orientation only) and $(H_2PO_3)^-$ moieties. Colour key as in Fig. 2. H3 and all C–H H atoms have been omitted for clarity.

Gordon, L. E. & Harrison, W. T. A. (2003). Acta Cryst E59, 0195-0197.

Harrison, W. T. A. (2003). Acta Cryst. E59, 0769-0770.

- Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Kanepe, I., Belyakov, S., Popelis, J. & Pudova, O. (2002). *Appl. Organomet. Chem.* 16, 228–234.
- Shape Software (1999). ATOMS. Version 5.0.7. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yilmaz, V. T., Icbudak, H., Olmez, H. & Howie, R. A. (1996). *Turkish J. Chem.* **20**, 69–73.